The effect of pressure on the rate of this reaction is a composite quantity, since the activation volumes for the normal and base-catalyzed paths will be different. It is easily possible to make the latter predominant by using high pH, but it would be impossible to interpret the activation volume since it would include a term of unknown magnitude for the hydrolysis preequilibrium. We therefore concentrated our efforts on the suppression of the base-catalyzed path by using only data from the experiments with pH near zero. Even so, this path contributes 18% and it will be reflected to a corresponding extent in the activation volume.

At 1360 atm with the conditions of expt 5, the relative retardation of rate was 1.35, and at 1080 atm the factor was 1.32. The corresponding activation volumes are +6 and +5 ml according to (4). The activation volume

$$-RT(\partial \ln k/\partial P)_{T} = \Delta V^{*}$$
(4)

in this case does not provide a critical test of mechanism, since the measured value is consistent with either a direct bimolecular substitution reaction

$$Fe(H_2O)_{6^{3+}} + SCN^{-} \longrightarrow activated complex$$
 (a)

or a two-step process involving slow dissocation and rapid combination

$$Fe(H_2O)_{\delta^{3+}} \longrightarrow Fe(H_2O)_{\delta^{3+}} + H_2O$$

$$Fe(H_2O)_{\delta^{3+}} + SCN^{-} \longrightarrow Fe(H_2O)_{\delta}SCN^{2+}$$
(b)

A model for eq a is the reaction of N,N,N-trimethylanilinium ion with phenoxide ion ($\Delta V^* = +7$ ml),⁶ and models for eq b are the unimolecular decomposition of diazonium ions,7 t-alkylsulfonium ions,8 alkylmercuric ions,⁹ and carboxylate ions⁸ ($\Delta V^* = +2$ to + 14 ml). In the first case the increase of volume results from the neutralization of charge and the release of electrostricted solvent, and in the second case it results from the breakage of a bond.

Acknowledgment. The author is indebted to the National Science Foundation which supported this work under Grant GP 7020 and to Dr. Charles Holmes who gave valuable advice concerning the electronic instrumentation.

- (6) K. R. Brower, J. Amer. Chem. Soc., 85, 1401 (1963).
- (7) K. R. Brower, *ibid.*, 82, 4535 (1960).
 (8) K. R. Brower and J. S. Chen, *ibid.*, 87, 3396 (1965).
- (9) K. R. Brower, B. Gay, and T. L. Konkol, ibid., 88, 1681 (1966).

Some Perfluoroalkylsulfinyl Halides, $R_{f}S(O)X$. New Preparations of Trifluoromethylsulfur Trifluoride¹

Charles T. Ratcliffe and Jean'ne M. Shreeve

Contribution from the Department of Chemistry, University of Idaho, Moscow, Idaho 83843. Received March 1, 1968

Abstract: The reaction of CF₃SCl with CF₃OF is the superior of four new methods for the preparation of CF₃SF₃. Trifluoromethylsulfinyl fluoride, which is prepared in good yield by the controlled hydrolysis of CF₃SF₃, undergoes metathetical reactions with HX to give new compounds, CF₃S(O)X. Trifluoromethylsulfinyl chloride and trifluoromethylsulfinyl bromide are prepared by reactions of $CF_3S(O)F$ with HCl and HBr, respectively. These tend to disproportionate to the respective sulfonyl and sulfenyl halides (R₁SO₂X and R₁SX). The new compound trifluoromethylsulfonyl bromide results from this disproportionation. In the presence of CsF, SOF₂ adds to C_2F_4 and C_3F_6 to give the higher perfluoroalkylsulfinyl analogs, $C_2F_3S(O)F$ and $i-C_3F_7S(O)F$.

rifluoromethylsulfur trifluoride (CF₃SF₃), which was first reported as one of many products resulting from the direct fluorination of CS₂,^{2a} more recently has been synthesized in better yield (40-50%) via the fluorina-tion of CS₂ or $(CF_3S)_2CS$ with AgF₂.^{2b} We wish to report four new methods for the preparation of CF₃SF₃ which involve the fluorination of CF₃SCl or CF₃SSCF₃ with CF_3OF , KF, or F_2 . Trifluoromethylsulfur trifluoride is obtained in essentially quantitative amounts from the action of trifluoromethyl hypofluorite on trifluoromethylsulfenyl chloride

$$3CF_{3}OF + 2CF_{3}SCI \longrightarrow 2CF_{3}SF_{3} + Cl_{2} + 3COF_{2}$$

- 790

Potassium fluoride, particularly if present as its carbonyl fluoride or hexafluoroacetone adduct, also fluorinates CF₃SCl to CF₃SF₃ but two-thirds of the CF₃SCl is consumed in the formation of CF₃SSCF₃. Bis(trifluoromethyl) disulfide with CF_3OF or F_2 produces CF_3SF_3 in lower yields accompanied by a variety of other fluorinated compounds.

The perfluoroalkylsulfinyl halides $(R_f S(O)X)$ are a new type of compound which have been observed previously only as trace impurities, e.g., CF₃S(O)F in the preparation of CF₃SF₃^{2b} and *i*-C₃F₇S(O)F in the preparation of *i*-C₃F₇SF₃.³ The present work deals with the preparation, properties, and some of the reaction chemistry of five perfluoroalkylsulfinyl halides. Trifluoromethylsulfinyl fluoride (CF₃S(O)F) is prepared quantitatively via the mild hydrolysis of CF_3SF_3

$$CF_3SF_3 + H_2O \longrightarrow CF_3S(O)F + 2HF$$

Presented in part at the Northwest Regional American Chemical Society Meeting, Richland, Wash., June 1967.
 (2) (a) E. A. Tyczkowski and L. A. Bigelow, J. Am. Chem. Soc., 75, 3523 (1953); (b) W. A. Sheppard, *ibid.*, 84, 3058 (1962).

⁽³⁾ R. M. Rosenberg and E. L. Muetterties, Inorg. Chem., 1, 756 (1962).

The reaction of $CF_3S(O)F$ with gaseous HX leads to the preparation of $CF_3S(O)X$.

$$CF_{3}S(O)F + HX \longrightarrow CF_{3}S(O)X + HF$$

 $X = Cl, Br$

While pure $CF_3S(O)Cl$ is relatively stable at 25°, $CF_3S(O)Br$ tends to disproportionate rapidly to CF_3SBr and the new sulfonyl compound, CF_3SO_2Br .

The CsF-catalyzed addition of SF₄ to perfluoropropene has been used in the preparation of $((CF_3)_2CF)_2SF_2$ and $(CF_3)_2CFSF_3$.³ In our laboratory, reactions of SOF₂ with C₂F₄ and C₃F₆ in the presence of CsF require moderate temperatures and pressures to yield C₂F₅S(O)F and *i*-C₃F₇S(O)F, respectively. Disproportionation products are also observed.

Experimental Section

Starting Materials. The preparation and purification of CF₃OF and COF₂ were carried out by the method described by Cady.⁴ Sulfinyl fluoride was prepared from sulfinyl chloride by roomtemperature fluorination with either cesium or potassium fluoride in a Hoke metal pressure vessel. Anhydrous CsF was obtained from American Potash Co. and was dried at 500° immediately prior to use. Anhydrous KF was prepared from KF · 2H₃O by dehydrating the salt at 450° for 6 hr and powdering the resulting cake. Tetrafluoroethylene was a product of the pyrolysis of Teflon shavings at 600°. Hexafluoroacetone (Pierce Chemical Co.), hexafluoropropene (Penninsular Chem Research Inc.), anhydrous hydrogen chloride (Matheson Co.), anhydrous hydrogen bromide (Matheson Co.), and trifluoromethylsulfenyl chloride and bis(trifluoromethyl) disulfide (Columbia Organic Chemicals) were used without further purification.

General Procedures. Gases and volatile liquids were handled in a conventional glass vacuum apparatus. A stainless-steel vacuum line fitted with Hoke M327 valves and a Wallace and Tiernan mechanical gauge was used to handle gases corrosive to glass or mercury. Gaseous starting materials and purified products were measured quantitatively by PVT techniques. Separation of gaseous product mixtures was carried out either by trap-to-trap distillation techniques or by a modified codistillation apparatus⁵ with vapor phase chromatographic columns. The columns were constructed of 0.25-in. aluminum tubing with Kel-F No. 3 polymer oil, FS-1265 or SF-96, on either Chromosorb P or Chromosorb W.

Physical Methods. Molecular weight measurements were carried out by vapor density techniques with a nickel or Pyrex glass weighing vessel. Infrared spectra were obtained in gas cells constructed of Pyrex glass with NaCl windows or Monel with AgCl windows with either a Beckman IR5A or a Perkin-Elmer Model 137. ¹⁹F nmr spectra were measured with a Varian DP-60 at 56.4 mHz, a Varian 4311 at 40 mHz, or a Varian HA-100 at 94.1 mHz. Trichlorofluoromethane (Matheson Co.) was used as an external standard in all cases.

Preparation of CF_3SF_3 . (a) $CF_3OF + CF_3SCl$. Explosions have occurred when equimolar quantities (20 mmoles) of the two reactants were warmed to -85° . A thoroughly dry system is necessary to prepare and maintain CF₃SF₃. In a typical run, 10 mmoles of CF₃SCl was condensed into a vessel maintained at -78° . Trifluoromethyl hypofluorite (15 mmoles) was added to the vessel in small portions as described below. The yields of CF3SF3 varied from 9.5 to 10 mmoles. CF3OF (5 mmoles) was allowed to enter the vacuum line and was added slowly to the vessel until the system was in equilibrium. The remainder of the CF3OF in the line was condensed into the vessel. After the reaction mixture was at -78° for about 0.5 hr, it was opened to the vacuum line and a trap at -183° until the pressure was reduced to about 5 mm. The volatile COF₂ and Cl₂ condensed in the colder trap while CF₃SF₃ and unreacted CF₃SCl remained behind. This procedure was repeated until a stoichiometric amount of CF₃OF (15 mmoles) had been added. Final purification of CF3SF3 was carried out by trap-totrap fractionation.

(b) $CF_3SCI + KF$. CH_3CN (5 ml) and COF_2 (2 mmoles) (or $(CF_3)_2CO$) were transferred into a vessel which contained about 2 g of KF and were allowed to remain until all of the COF_2 ($(CF_3)_2CO$)

had been consumed by the KF.⁶ CF₃SCl (2 mmoles) was then condensed into the vessel and was allowed to remain at room temperature until the yellow color of CF₃SCl had disappeared. An infrared spectrum of a volatile sample from the colorless mixture showed only CF₃SF₃, CF₃SSCF₃, COF₂ ((CF₃)₂CO), and CH₃CN. Trapto-trap distillation was found to be effective for the removal of COF₂ ((CF₃)₂CO) and CH₃CN from the mixture, but CF₃SF₃ could not be freed completely of CF₃SSCF₃. Yields were approximated to be 0.6 mmole each of CF₃SF₃ and CF₃SSCF₃. Although a longer reaction time was required, excess anhydrous KF with CF₃SCl in acetonitrile was observed to proceed to give essentially the same results.

(c) $CF_3SSCF_3 + F_2$. The CF_3SSCF_3 obtained as a byproduct in the previous reaction was effectively used to prepare CF₃SF₃ by reacting the former with a fluorine-nitrogen mixture. A 50-ml glass vessel which contained 20 ml of CH₃CN, 3 g of KF, and 5 mmoles of CF₃SSCF₃ was connected through a vacuum line to a 500-ml nickel vessel which contained 100 mm of F2 and 500 mm of N2. The diluted fluorine was allowed to enter the 10-ml glass line and was slowly admitted to the reaction vessel at room temperature until the system was at equilibrium. The reaction vessel was then cooled to -100° and the nitrogen pumped off. This procedure was repeated until all the fluorine had been consumed. The product mixture was subjected to trap-to-trap distillation. The CF_3SF_3 and some unreacted CF_3SSCF_3 were held in a trap at -183° while the CH₃CN and the majority of unreacted CF₃SSCF₃ were retained at -65° . Contents of the latter trap were returned to the reaction vessel for reuse with more CF_3SSCF_3 and F_2 . The trap at -183° was found to contain about 90% of the CF_3SF_3 contaminated with minor amounts of CF4, SF6, and some unreacted CF3SSCF3. The conversion of CF3SSCF3 to CF3SF3 was nearly quantitative with no unreacted fluorine remaining. The yield of CF_3SF_3 was about 90% under the above conditions; however, if the nitrogen dilution was decreased, CF4 and SF6 were observed as the major products.

(d) $CF_3OF + CF_3SSCF_3$. An equimolar mixture of CF_3OF and CF_3SSCF_3 (1.0 mmole) was condensed into a 150-ml nickel vessel which had been prefluorinated. After 24 hr at room temperature, an infrared spectrum of the mixture showed that all of the CF_3OF had been consumed. Three major components present were COF_2 , CF_3SF_3 , and unreacted CF_3SSCF_3 . Minor amounts of SOF_2 , CF_4 , CO_2 , C_2F_6 , and CF_3SCF_3 (identified by infrared⁷) were also found. The yield of CF_3SF_3 was estimated at about 70%.

Properties of CF₃**SF**₃. The boiling and melting points $(-7, -110^\circ)$ have been reported.^{2a} The compound reacts rapidly with H₂O to give CF₃**S**(O)F and HF. Although it is stable in glass at -183° for indefinite periods or for a few days at -78° , it decomposes in glass at room temperature to give a white solid. Its reactivity with mercury precludes the use of mercury manometers. The average molecular weight and infrared and ¹⁹F nmr spectra are given in Table I.

Preparation of CF₃S(O)F. Trifluoromethylsulfinyl fluoride was prepared by the mild hydrolysis of CF3SF3. CF3SF3 (5 mmoles), prepared via method a above, was condensed into a 1-l. Pyrex glass vessel fitted with a high-vacuum stopcock. About 100 mm of air was allowed to enter the vessel to give a total pressure of 200 mm at room temperature. While the vessel was held at room temperature, a white coating formed on the glass surface which was due apparently to attack on glass by HF. After 5 hr an infrared spectrum of the two contents of the vessel indicated absorption bands which were associated only with CF₃S(O)F and SiF₄. The condensable contents of the reaction vessel were trapped in a "U" trap held at -183° and the air was pumped away. The CF₃S(O)F (5 mmoles) was purified by pumping away the volatile SiF4 at -85° or by passing the gaseous mixture through a tube filled with dry NaF. For use in the measurement of physical data, the product was further purified by vapor-phase chromatography with a 12-ft FS-1265-Chromosorb P column at 25°

Properties of CF₃S(O)F. Trifluoromethylsulfinyl fluoride exists as a colorless gas at room temperature and condenses to a colorless liquid. When pure, the compound is stable in glass and toward mercury and is not hydrolyzed by the moisture in the air. It has an irritating odor similar to that of SOF₂. The boiling point was found to be -1.6° from a Clausius-Clapeyron curve which is described by the equation log $P_{\rm mm} = 7.140 - 1153/T^{\circ}K$. Vapor

⁽⁴⁾ G. H. Cady, Inorg. Syn., 8, 165 (1966).

⁽⁵⁾ G. H. Cady and D. P. Slegwarth, Anal. Chem., 31, 618 (1959).

⁽⁶⁾ M. E. Redwood and C. J. Willis, Can. J. Chem., 43, 1893 (1965).
(7) G. R. A. Brandt, H. J. Emeléus, and R. N. Haszeldine, J. Chem. Soc., 2549 (1952).

	CF₃- SF₃	CF ₃ - S(O)F	CF ₃ - S(O)Cl	CF ₃ - S(O)Br	C_2F_5 - S(O)F	<i>i</i> -C ₃ F ₇ - S(O)F	CF₃- SBr	CF₃- S(O)(O)Br	$(C_2F_5)_2S_2$	$(i-C_{3}F_{7})_{2}S$
Mol wt ^a Anal ^a	156 (158)	136 (136)	153 (153)		187 (186)	239 (236)	181 (181)	214 (213)	299 (302)	365 (370)
С			8.03 (7.87)		•••	15.39 (15.25)	•••	•••	16.16 (15.90)	
F			37.26 (37.40)		57.99 (61.21)	64.19 (64.40)		•••	62.74 (62.93)	
S	••••	22.4 (23.5)	21.22 (20.98)		16.81 (17.19)	13.31 (13.55)		•••	21.03 (21.20)	
Br or Cl			23.51 (23.29)			••••	45.96 (44.15)		•••
Infrared	1260 s 1237 s 1130 s 848 m	1268 s 1227 (sh) 1212 s 1147 s	1238 vs 1216 vs 1123 vs	1235 s 1205 s 1116 s	1350 s 1260 vs 1221 (sh) 1135 s 990 w	1300 vs 1258 vs 1177 m 1136 w 980 s 748 c	1180 vs 1116 vs	1424 s 1236 s 1116 s	1330 s 1227 vs 1166 m 1121 s	1290 vs 1245 vs 1185 w 1165 m 1125 w
	704 VS	751 8	749 III		960 m 746 s 640 w	746 s 717 m	700 W		948 VS 749 m	900 s 885 s 757 m 715 s
Nmr (ppm) CF ₃ CF ₂ CF	72.8 (3) ^b d	84.1 (3) d	81.8 s	76.4 s	81.2 (3) d 126.9 (2) s	70.4 (6) d	47.0 s	78.5 s	85.4 (3) s 97.2 (2) s	77.6 (6) s
SF SF₂	49.6 (1) t -47.4 (2) d of q	21.6(1)q			20.5(1)q	10.2(1)				105.0 (1) \$

^a Calculated value in parentheses. ^b Relative peak area.

pressure data are as follows (T, °K; P, mm): 205.0, 25; 215.8, 60; 225.5, 105; 232.3, 146; 214.5, 221; 248.0, 305; 248.8, 310; 251.3, 341; 252.0, 351; 253.5, 374; 257.5, 435; 261.0, 535; 265.5, 620; 270.2, 751; 271.0, 770. The molar heat of vaporization is 5.28 kcal and the Trouton constant is 19.5. When CF₃S(O)F is cooled it forms a glass; a melting point was not obtained. The average molecular weight, elemental analysis, and infrared and ¹⁹F nmr data are included in Table I.

Reactions of CF₃S(O)F. (a) With F_2 and CsF. In a 75-ml Hoke vessel were placed CsF (2 g) and CF₃S(O)F (0.36 mmole). One atmosphere of F_2 was added to the vessel at -183° . After 24 hr at 25°, the contents were examined and found to consist of two major products, CF₄ and SF₅OF. Sulfonyl fluoride and SF₆ were present in minute amounts.

(b). With N₂F₄. An equimolar mixture (3 mmoles) of CF₃S(O)F and N₂F₄ were condensed into a nickel vessel and heated at 300° for 48 hr. The mixture was separated by vpc (FS-1265–Chromosorb P) and found to contain CF₃NF₂SOF₂, a small amount of CF₄, and about 50% of unreacted starting materials.

Preparation of CF₃S(O)Cl. In a typical run, HCl (1.53 mmoles) and CF₃S(O)F (1.50 mmoles) were condensed into a cylindrical glass vessel and the mixture was allowed to warm from -183 to 25° over a period of 1 hr. After separation via vpc (20% Kel-F-80% Chromosorb P, 3-ft column), one major product was identified as CF₃S(O)Cl (1.43 mmoles). Two minor products, identified as CF₃SCl⁵ and CF₃SO₂Cl,⁹ were eluted and comprised about 5% of the mixture.

Properties of CF₃S(O)Cl. Trifluoromethylsulfinyl chloride is a colorless gas at room temperature and condenses to a colorless liquid. The reaction of CF₃S(O)Cl with mercury is very rapid. The compound is stable in glass but disproportionates in the presence of water or in its preparation mixture to give CF₃SO₂Cl and CF₃SCl. After 24 hr at 25°, trifluoromethylsulfinyl chloride had reacted quantitatively with excess NaF to give CF₃S(O)F as the only volatile product. Molecular weight, elemental analysis, infrared, and ¹⁹F nmr data are given in Table I.

Preparation of CF₃S(O)Br. In a typical reaction, HBr (2.35 mmoles) and CF₃S(O)F (2.0 mmoles) were allowed to remain at -78° for 1 hr. Part of the red-yellow product mixture was separated by vapor phase chromatography (20% Kel-F-80% Chromosorb P, 4-ft column) and found to contain CF₃SBr, Br₂, CF₃S(O)Br, and SiF₄. After 15 min at 25°, the remainder of the mixture was

separated. In this portion, CF₃SBr was the major product with CF₃S(O)Br and CF₃SO₂Br present in lesser amounts. Reactions carried out in nickel vessels gave similar results. The yield of CF₃S(O)Br was increased somewhat by condensing HBr (2.35 mmoles) and CF₃S(O)F (2.1 mmoles) onto KBr (5 g) at -183° . After 10 min at 25°, the volatile products were removed (HF, H₂O, SiF₄, and some Br₂ remained on the KBr), and separation indicated about a 60% yield of CF₃S(O)Br in addition to CF₃SBr and Br₂. Complete separation of the products was not possible. Chromatographic columns brought about partial disproportionation of CF₃S(O)Br to CF₃SO₂Br and CF₃SBr before it could be eluted. The Kel-F-Chromosorb P column caused the least disproportionation during separation; however, CF₃SO₂Br and CF₃S(O)Br could not be completely resolved.

Properties of CF₃S(O)Br, CF₃SBr, and CF₃SO₂Br. Trifluoromethylsulfinyl bromide (CF₃S(O)Br) is a colorless liquid at 25° which attacks mercury but does not affect glass. At 25°, it undergoes rapid disproportionation to CF₃SBr and CF₃SO₂Br which made full characterization impossible. The infrared and the ¹⁹F spectra are given in Table I. After 24 hr, in contact with excess NaF, a sample of CF₃S(O)Br (contaminated with CF₃SBr and CF₃-SO₂Br) was converted to CF₃S(O)F and CF₃SO₂SCF₃.

Trifluoromethylsulfenyl bromide (CF₃SBr) was obtained pure by separation from CF₃SO₂Br after CF₃S(O)Br had completely disproportionated. It has a reported boiling point of 36° and index of refraction, n^{16} D 1.3855.^{10,11} The orange-red liquid is stable to 25° in a sealed glass tube, but decomposes quantitatively in sunlight to CF₃SSCF₃ and Br₂. The molecular weight, elemental analysis, and infrared and ¹⁹F nmr data are given in Table I.

Trifluoromethylsulfonyl bromide (CF₃SO₂Br) exists as a colorless liquid at room temperature. It is stable toward glass, does not hydrolyze readily, and does not react with NaF at room temperature. Molecular weight and infrared and ¹⁹F nmr spectra are in Table I.

Preparation of $C_2F_5S(O)F$. Caution. Uninhibited C_2F_4 has been observed to be susceptible to spontaneous explosion when under a pressure greater than 49 psi.¹² In a typical run, CsF (1g) was placed in a 30-ml Hoke vessel or a thick-walled glass vessel fitted with a pressure valve assembly. After an equimolar quantity

⁽¹⁰⁾ E. Kuehle, E. Klauke, and F. Grewe, Angew. Chem., 76, 807
(1964).
(11) N. N. Yarovenko and A. S. Vasil'eva, Zh. Obshch. Khim., 29,

⁽⁸⁾ S. N. Nabi and N. Sheppard, J. Chem. Soc., 3439 (1959).

⁽⁹⁾ R. N. Haszeldine and J. M. Kidd, ibid., 2901 (1955).

<sup>3787 (1959).
(12)</sup> D. P. Graham, J. Org. Chem., 31, 955 (1966).

Properties of $C_2F_5S(O)F$ and $C_2F_5SSC_2F_5$. Pentafluoroethylsulfinyl fluoride (C₂F₅S(O)F) is a colorless liquid at 25° which is inert toward mercury and glass but readily absorbs moisture to give a cloudy liquid. The compound has a boiling point of 20° as determined from a vapor pressure curve described by the following equation: $\log P_{\rm mm} = 7.952 - 1486/T^{\circ}K$. Vapor pressure data are as follows (T, $^{\circ}K$; P, mm): 235.0, 42.5; 245.9, 80; 253.5, 122; 263.0, 198; 270.8, 273; 273.6, 334; 277.8, 395; 285.1, 540; 289.6, 644; 291.6, 676.5. The molar heat of vaporization is 6.8 kcal and the Trouton constant is 23.0. When $C_2F_3S(O)F(0.1 \text{ mmole})$ and N_2F_4 (0.5 mmole) were heated in a nickel vessel at 300° for 2 hr, $C_2F_5NF_2{}^{13}$ and SOF_2 were collected as the two major products with C_2F_6 and unreacted N_2F_4 also present. Average molecular weight, elemental analysis, and infrared and ¹⁹F nmr spectra are in Table I.

Bis(pentafluoroethyl) disulfide ($C_2F_5SSC_2F_5$) is mentioned in the patent literature;¹⁴ however, no information was available to help identify the compound. Molecular weight, elemental analysis, and infrared and ¹⁹F nmr spectra are given in Table I.

Preparation of $i-C_3F_1S(O)F$. In a typical run, SOF_2 (14.2 mmoles) and C_3F_6 (15.5 mmoles) were condensed into a 75-ml Hoke vessel containing CsF (2 g). The volatile product mixture was separated by trap-to-trap distillation after the vessel was held in an oven at 150° for 2 days. At -183° , SOF₂ and C₃F₆ along with a small amount of SO_2F_2 were found (13.4 mmoles). The mixture (5.3 mmoles) retained at -78° was comprised of four components as indicated by vpc separation. The first two components could not be separated completely from each other and accounted for 10 and 4% of the mixture, while the last two components, identified as $i-C_3F_7S(O)F$ and $(i-C_3F_7)_2S$, accounted for 71 and 15% of the product mixture. The conversion of SOF_2 was usually about 33% and the yield of *i*-C₃F₇S(O)F was 60-80% as measured from the chromatographic peak areas.

Properties of i-C₃F₇S(O)F and (i-C₃F₇)₂S. Heptafluoroisopro-pylsulfinyl fluoride is a colorless liquid at 25° and is nonreactive toward glass and mercury. Molecular weight, elemental analysis, and infrared and ¹⁹F nmr spectra are in Table I.

Bis(heptafluoroisopropyl) sulfide $((i-C_3F_7)_2S)$ was partially identified from the nuclear magnetic resonance data of Rosenberg and Muetterties.³ Molecular weight and infrared and ¹⁹F nmr spectra are given in Table I.

Results and Discussion

Trifluoromethyl hypofluorite behaves as a fluorinating agent in its reactions with CF₃SSCF₃ and CF₃SCl. The main reaction with the former is

$$3CF_{3}OF + CF_{3}SSCF_{3} \xrightarrow{25^{\circ}} 2CF_{3}SF_{3} + 3COF_{2}$$

No other trifluoromethylsulfur fluorides were identified although CF_3SF_5 might reasonably be expected to form. However, small amounts (about 10% of reaction mixture) of C₂F₆, SOF₂, CF₃SCF₃, CO₂, and CF₄ were observed upon gas chromatographic separation. Because of reactivity toward glass, water, and silicon-based column materials, the yield of CF₃SF₃ was often reduced owing to the *in situ* generation of $CF_3S(O)F$ and SiF_4 . In the reaction of CF_3OF and CF_3SCl at -78° , the

(13) J. K. Brown and K. J. Morgan, "Advances in Fluorine Chemistry," Vol. IV, M. Stacey, et al., Ed., Butterworth & Co. (Publishers) Ltd., London, 1965, pp 253-310.

(14) C. G. Krespan, U. S. Patent 2,884,614 (1958); Chem. Abstr., 53, P3061f (1959).

Journal of the American Chemical Society | 90:20 | September 25, 1968

conversion of CF_3SF_3 is between 95 and 100%. This provides an easily separable product mixture, a high yield, and mole for mole return of CF₃SF₃ from CF₃SCl.

The interaction of $KOCF_3$, KOC_3F_7 , or anhydrous KF with CF₃SCl in an acetonitrile solution give identical equimolar mixtures of CF₃SSCF₃ and CF₃SF₃. The existence of CF₃SF¹⁵ as an unstable intermediate species which subsequently disproportionates is helpful in explaining the volatile products. It is unlikely that CF₃SSCF₃ results from CF₃SCl under the experimental conditions since no Cl₂ is detected. Although the reaction

$$3CF_{3}SCl + 3KF \cdot X \xrightarrow{25^{\circ}}_{CH_{3}CN} (3CF_{3}SF) \longrightarrow$$

$$CF_{3}SSCF_{3} + CF_{3}SF_{3} + 3KCl + X$$

$$X = COF_{2}, (CF_{3})_{2}O, \text{ or nothing}$$

goes to completion in a few hours with no apparent side reactions, it does not efficiently utilize CF₃SCl. When the reaction mixture was separated with a FS-1265-Chromosorb P column, no CF₃SF₃ was observed, but owing to reaction with the column packing equal quantities of CF_3SSCF_3 and $CF_3S(O)F$ were eluted from the column. Complete separation of CF₃SF₃ from CF₃SSCF₃ was not realized, although partial separation was obtained by trap-to-trap distillation.

While the hydrolysis of CF_3SF_3 by the moisture in the air occurs essentially quantitatively to give CF₃S(O)F in a few hours at 25°, if an aqueous solution is used to hydrolyze CF₃SF₃, a more complicated series of reactions occur probably due to attack on the CF₃S(O)F. This process was not studied. Trifluoromethylsulfinyl fluoride reacted readily with fluorine in the presence of CsF to give CF₄ and SF₅OF which suggests that the CS bond was severed to yield CF₄ and SOF₂ which was subsequently catalytically fluorinated to SF₅OF.¹⁶ The thermal stability of CF₃S(O)F is demonstrated in its reaction with N_2F_4 which after 48 hr at 300° gave rise to CF_3NF_2 and SOF_2 and 50% of the starting materials. These products are again good evidence for the CF₃-S(O)F species and are formed owing to the expected reaction mode of N₂F₄ as a difluoraminating and fluorinating agent with sulfur-containing molecules.¹⁷

Aluminum chloride has no effect on CF₃S(O)F, although it has been useful in other systems for replacing S-F groups by S-Cl.¹⁸ However, hydrogen chloride rapidly converts CF₃S(O)F to CF₃S(O)Cl. On the 1.5mmole scale this reaction is complete within 1 hr and CF₃S(O)Cl must be removed promptly in order to prevent disproportionation. The latter is apparently catalyzed by water formed by HF attack on glass, i.e.

$$CF_{3}S(O)F + HCl \longrightarrow CF_{3}S(O)Cl + HF$$

$$4HF + SiO_{2} \longrightarrow 2H_{2}O + SiF_{4}$$

$$CF_{3}S(O)Cl \longrightarrow CF_{3}SO_{2}Cl + CF_{3}SCl$$

$$H_{2}O$$

When the product mixture was held at 25° for 12 hr, very little CF₃S(O)Cl was found and the CF₃S(O)Cl had been essentially quantitatively converted to CF_3SCl^8 and $CF_3SO_2Cl.^9$ In order to maximize the yield of $CF_3S(O)Cl$, about a 5% molar excess of HCl was added.

⁽¹⁵⁾ F. Seel, W. Gombler, and R. Budenz, Angew. Chem. Intern. Ed. Engl., 6, 706 (1967). CF_3SF_3 is observed as a decomposition product of CF₃SF in the presence of HF: private communication.
(16) J. K. Ruff and M. Lustig, *Inorg. Chem.*, 3, 1422 (1964).
(17) C. L. Bumgardner and M. Lustig, *ibid.*, 2, 622 (1963).
(18) M. Lustig, *ibid.*, 5, 1317 (1966).

The reaction of $CF_3S(O)F$ with HBr gives rise to a more complex system since it appears to occur by two routes when the reactants are held at -78° . CF_3S -(O)Br is unstable with respect to disproportionation at 25° in the reaction mixture as well as when pure. If it does disproportionate at -78° , the reaction is conveniently much slower. The reactions may proceed

 $CF_{3}S(O)F + HBr \xrightarrow{-78^{\circ}} CF_{3}S(O)Br + HF (SiF_{4} + H_{2}O)$ $CF_{3}S(O)F + 3HBr \xrightarrow{-78^{\circ}} CF_{3}SBr + Br_{2} + H_{2}O + HF (SiF_{4} + H_{2}O)$

$$2CF_3S(O)Br \xrightarrow{23} CF_3SBr + CF_3SO_2Br$$

The presence of CF_3SBr as the only sulfur-containing product in addition to $CF_3S(O)Br$ at -78° requires a concomitant oxidation product. The fact that bromine is formed and CF₃SO₂Br is not suggests that CF₃SBr does not result from disproportionation but is rather a product of a simultaneous reaction. Also, since a slight molar excess of HBr is required to consume completely the CF₃S(O)F is suggestive of a second reaction route. When the reaction mixture is allowed to stand briefly at room temperature and is then separated, CF₃SBr is the major sulfur product with lesser amounts of $CF_3S(O)Br$ and CF_3SO_2Br now observed. This indicates that the increase in the amount of CF3SBr and the presence of CF₃SO₂Br arise from disproportionation of CF₃S(O)Br. In every case, CF₃SBr was present in larger amounts than CF_3SO_2Br . It may be that the system is even more complex than indicated here but, because of our inability to adequately purify CF₃S(O)Br and because of its rapid disproportionation, a quantitative study of the reaction system was not carried out.

The disproportionation of CF₃S(O)Br can be readily followed by infrared. After 8 hr at 25°, an equimolar mixture of CF₃SO₂Br and CF₃SBr remains. The infrared band at 1205 cm⁻¹ (characteristic of CF₃S(O)Br) decreases in intensity and bands at 1423 and 1180 cm⁻¹ (characteristic of CF₃SBr and CF₃SO₂Br) increase.

When a mixture of CF_3SO_2Br , CF_3SBr , and CF_3S -(O)Br remained in contact with NaF for 24 hr, CF_3 -SO₂Br and CF_3SBr were not affected and $CF_3S(O)F$ was the only new product. Thus, as with $CF_3S(O)Cl$, $CF_3S(O)Br$ is converted to its more stable fluoro analog. In some cases, $CF_3SO_2SCF_3$ was observed and is thought to arise from the hydrolysis of CF_3SBr brought about by inadequately dried NaF.¹⁹ Trifluoromethylsulfonyl bromide did not react with NaF even at 135°

That the reaction of SOF₂ with C_2F_4 will proceed in the presence of CsF under moderate conditions to give $C_2F_5S(O)F$ as the major product indicates an intermediate of the type CsC_2F_5 , which subsequently undergoes nucleophilic attack by SOF₂. Under no conditions which were tried was the symmetrical bis-(pentafluoroethyl) sulfoxide identified as a product. Polymerized C_2F_4 was invariably a product and increasing the amount of C_2F_4 to attain a larger conversion of SOF₂ did not affect the yield of $C_2F_5S(O)F$ but resulted in additional polymer formation. The presence of $C_2F_5SSC_2F_5$ and $C_2F_5SO_2F$ as minor volatile products suggests the partial disproportionation of $C_2F_5S(O)F$.

$$2C_2F_{\delta}S(O)F \longrightarrow C_2F_{\delta}SO_2F + (C_2F_{\delta}SF)$$

$$(3C_2F_{\delta}SF) \longrightarrow (C_2F_{\delta}SF_{\delta}) + C_2F_{\delta}SSC_2F_{\delta}$$

$$(2C_2F_{\delta}SF_{\delta}) \xrightarrow{SiO_2} C_2F_{\delta}S(O)F + SiF_{\delta}$$

We do not have proof for either C_2F_5SF or $C_2F_5SF_3$. The reaction between SOF_2 and C_3F_6 apparently occurs *via* a route similar to the above. The formation of larger quantities of $(i-C_3F_7)_2S$ than of SO_2F_2 has not been explained. No evidence is found for the formation of a symmetric sulfoxide.

The nuclear magnetic spectrum of CF₃SF₃ is in essential agreement with that of Muetterties.²⁰ Our assignments of a broadened triplet at 49.6 ppm to SF and two overlapping quartets at -47.4 ppm to SF₂ were based on relative peak areas (1:2) $(J_{SF-SF_2} = 70)$ cps). A resonance at 72.8 ppm is a doublet assigned to CF₃. Resonances observed for CF₃S(O)F occur as a quartet at +21.6 ppm (SF) and a doublet at +84.1 ppm (CF₃) with a coupling constant $J_{CF-SF} = 8$ cps. The ¹⁹F nmr spectrum of CF₃S(O)Br was obtained on a mixture which contained CF₃SBr, CF₃S(O)Br, and CF₃SO₂Br. Two intense resonances were observed at +47.0 and 78.5 ppm (equal area) and one at +76.4 ppm. The former two were assigned to CF₃SBr and CF₃SO₂Br, respectively, based on values obtained when pure samples of these compounds were examined which led to the assignment of the resonance at +76.4 ppm to $CF_{3}S(O)Br$. This fits into the trend of shifts, since, as the sulfinyl halide changes from F to Cl to Br, the chemical shift of the CF_3 group decreases from +84.1 to 81.8 to 76.4 ppm. A chemical shift of +47.0 ppm for CF₃SBr seems to be in agreement with that expected since the CF₃ chemical shift for CF₃SF and CF₃SCl are reported to be +58 and 51 ppm, respectively.¹⁵

No hyperfine interaction is observed for the methyl and methylene groups in $(C_2F_5)_2S_2$. Such is the case for other perfluoroethyl compounds.²¹ Singlets at +85.4 (CF₃) and at 97.3 ppm (CF₂) have an area ratio of 3:2. In $C_2F_5S(O)F$ with a singlet (CF₂, +126.9), a doublet (CF₃, +81.2), and a quartet (SF, +20.5), spin coupling occurs only between CF3 and SF to give $J_{SF-CF_3} = 12$ cps. The SF resonance in *i*-C₃F₇S(O)F occurs as a septet of doublets centered at +10.2 ppm as does the CF resonance at 180.4 ppm. The CF₃ resonance is a doublet at 70.4 ppm. Hyperfine interactions give $J_{CF-SF} = 5$; $J_{CF-CF^3} = 8.5$; $J_{SF-CF_3} = 9.2$ cps. It is not clear why the CF₃ resonance is only a doublet arising from interaction of CF and CF_3 (J =8.5 cps) since CF₃-SF interaction should also be observed. For $(i-C_3F_7)_2S$, our data are consistent with that reported earlier.³ No fine structure was observed. Chemical shifts for the S-F fluorine in $R_fS(O)F$ decrease from +21.6 to 20.5 to 10.2 as the R_f group changes from CF_3 to C_2F_5 to *i*- C_3F_7 .

Although the infrared spectra of the perfluoroalkylsulfinyl halides contain comparatively few absorption bands, the close proximity of the C-F asymmetric stretch and the S-O stretching frequency causes difficulty in the assignment of either. While a characteristic strong absorption band in the 1055-cm⁻¹ region is assigned to the S-O stretch in some alkyl sulfoxides, the

⁽¹⁹⁾ Hydrolysis of CF $_3$ SCl has been shown to give CF $_3$ SO $_2$ SCF $_3$. Dr. A. Haas, Göttingen supplied the infrared spectrum.

⁽²⁰⁾ E. L. Muetterties, W. Mahler, K. J. Packer, and R. Schmutzler, Inorg. Chem., 3, 1298 (1964) (SF and SF₂ at 51.6 and -48.4 ppm; $J_{SF-SF_2} = 70$ cps). In *i*-C₃F₇SF₃, SF and SF₂ at 54.3 and -61.3 ppm.³

⁽²¹⁾ J. H. Prager and P. G. Thompson, J. Am. Chem. Soc., 87, 230 (1965).

S-O stretches in SOF₂ and SOCl₂ occur at 1312 and 1229 cm⁻¹, respectively.²² Kagarise²³ was able to demonstrate a linear relationship between carbonyl stretching frequency and the sum of the electronegativity values (Gordy scale²⁴) of atoms X and Y in molecules of the type XCOY. However, when this was applied to structurally similar sulfinyl compounds,²⁵ the points fell on a smooth curve and it was noted that changes in electronegativities of substituents in XSOY had smaller effects on S-O stretching frequency than on C-O analogs. This is in agreement with Moffitt²⁶ who showed that there is a relatively small variation in bond order in many XSOY compounds. When the electronegativities^{22,23} of the trifluoromethylsulfinyl halides are superimposed on this curve, the absorption bands at 1268, 1238, and 1235 cm⁻¹ for CF₃S(O)F, CF₃S(O)Cl, and $CF_3S(O)Br$, respectively, correspond to the S–O stretching frequency. By the same process, bands at 1260 and 1258 cm⁻¹ in the spectra of $C_2F_5S(O)F$ and $i-C_3F_7S(O)F$ are attributable to S-O stretch. Based

(22) D. Barnard, J. M. Fabian, and H. P. Koch, J. Chem. Soc., 2442 (1949).

(23) R. E. Kagarise, J. Am. Chem. Soc., 77, 1377 (1955).

(24) W. Gordy, J. Chem. Phys., 14, 305 (1946).
 (25) H. H. Szmant and W. Emerson, J. Am. Chem. Soc., 78, 454

(1956).

(26) W. Moffitt, Proc. Roy. Soc. (London), A200, 409 (1950).

on the above, CF asymmetric stretching frequencies are assigned to 1227, 1216, and 1205 cm^{-1} and symmetric bands to 1147, 1123, and 1116 cm⁻¹ in CF₃S(O)F, CF₃S-(O)Cl, and $CF_3S(O)Br$, respectively. As the size and electronegativity of the substituent halide increase. there is a concomitant decrease in the S-O and asymmetric and symmetric C-F stretching frequencies. This decrease is observed for asymmetric and symmetric S-O stretch in CF₃SO₂F and CF₃SO₂Cl⁹ at 1463 and 1239 cm⁻¹ and 1439 and 1239 cm⁻¹, respectively, and, from this work, for CF₃SO₂Br at 1424 and 1236 cm⁻¹. For CF₃SBr, by comparison with CF₃SCl,⁸ bands at 1180 and 1116 are asymmetric and symmetric C-F stretches and the band at 760 is a CF_3 deformation. The characteristic broad band centered at approximately 748 cm⁻¹ in CF₃S(O)F, C₂F₅S(O)F and *i*-C₃- $F_7S(O)F$ is probably due to S-F stretch; however, CF_3 deformation occurs in this region.

Acknowledgment. Our gratitute is due the Office of Naval Research who generously supported this work. We thank Dr. M. Lustig, Rohm and Haas; Mr. B. J. Nist, University of Washington; Dr. F. Aubke, University of British Columbia; and Dr. W. Fox, Allied Chemical, for nuclear magnetic resonance spectra.

Additional Studies Concerning the Existence of "O₃F₃"

I. J. Solomon, J. N. Keith, A. J. Kacmarek, and J. K. Raney

Contribution from IIT Research Institute, Chicago, Illinois 60616. Received March 29, 1968

Abstract: Additional O^{17} and F^{19} data on the oxygen fluorides have been obtained. The reactions of the oxygen fluorides with boron trifluoride are also described. All of the evidence obtained supports the conclusion that " O_3F_2 " is actually a mixture of O_2F_2 and (OOF)_n.

Several oxygen fluorides have been reported, namely $OF_{2,1} O_2F_{2,2} O_3F_{2,3} O_4F_{2,4}$ and recently $O_5F_{2,5} O_4F_{2,5} O_4F_{2,5} O_4F_{2,5}$ and $O_6F_{2}{}^{,5}$ The structures of OF_2 and O_2F_2 are well known, but very little is known about the higher oxygen fluorides. Recently, the structure and even the existence of "O₃F₂" have been subjects of considerable concern.

Malone and McGee⁶ applied cryogenic mass spectrometry to the problem and concluded that $"O_3F_2"$ consists of loosely bonded O₂F and OF radicals. Nebgen, et al.,⁷ studied the F^{19} nmr spectrum of " O_3F_2 " and postulated an " O_3F_2 " model consisting of O_2F_2 and interstitial oxygen. Previous work in our laboratories8 on both F19 and O17 nmr spectroscopy of

 (6) T. J. Malone and H. A. McGee, J. Phys. Chem., 71, 3060 (1967).
 (7) J. W. Nebgen, F. I. Metz, and W. B. Rose, J. Amer. Chem. Soc., 89, 3118 (1967).

"O₃F₂" led us to conclude that the system is best explained as

$$(O_2F_2, O_4F_2)$$

$$\downarrow \uparrow$$

$$200F \longrightarrow O_2F_2 + O_2 \qquad (1)$$

We wish to report recent results that we believe further substantiate this conclusion.

Experimental Section

OF₂ was obtained from the Allied Chemical Corp. The other oxygen fluorides were prepared by using previously reported procedures.²⁻⁴ The O¹⁷-enriched OF₂ was obtained from the Texaco Research Center.

The nmr spectrometer used was the conventional Varian DP-60 equipped with a low-temperature wide-line dewar coil; the cooling system was altered slightly to obtain better temperature control and to allow rapid insertion of the sample. Cooling was achieved with gaseous nitrogen previously cooled by passage through a copper coil immersed in liquid nitrogen. The temperature was controlled by varying the flow of the nitrogen.

⁽¹⁾ P. Lebeau and A. Damlens, C. R. Acad. Sci., Paris, 185, 652

<sup>(1927).
(2)</sup> O. Ruff and W. Menzel, Z. Anorg. Allg. Chem., 229, 423 (1932).
(3) A. D. Kirshenbaum and A. V. Grosse, J. Amer. Chem. Soc., 81, 1277 (1959).

⁽⁴⁾ A. V. Grosse, A. G. Streng, and A. D. Kirshenbaum, ibid., 83, 1004 (1961).

⁽⁵⁾ A. G. Streng and A. V. Grosse, ibid., 88, 169 (1966).

⁽⁸⁾ I. J. Solomon, J. K. Raney, A. J. Kacmarek, R. G. Maguire, and G. A. Noble, ibid., 89, 2015 (1967).